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Introduction

Introduction

In this module, we review some properties of Student’s t distribution.

We shall then relate these properties to the null and non-null
distribution of three classic test statistics:

1 The 1-Sample Student’s t-test for a single mean.

2 The 2-Sample independent sample t-test for comparing two means.

3 The 2-Sample “correlated sample” t-test for comparing two means
with correlated or repeated-measures data.

We then discuss power and sample size calculations using the
developed facts.
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Student’s t Distribution

Student’s t Distribution

In a preceding module, we discussed the classic z-statistic for testing
a single mean when the population variance is somehow known.

Student’s t-distribution was developed in response to the reality that,
unfortunately, σ2 is not known in the vast majority of situations.

Although substitution of a consistent sample-based estimate of σ2

(such as s2, the familiar sample variance) will yield a statistic that is
still asymptotically normal, the statistic will no longer have an exact
normal distribution even when the population distribution is normal.

The question of precisely what the distribution of

Y • − µ0√
s2/n

(1)

is when the observations are i.i.d. normal was answered by “Student.”
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Student’s t Distribution Basic Facts about Student’s t

Student’s t Distribution

The pdf and cdf of the t-distribution are readily available online at
places like Wikipedia and Mathworld.

The formulae for the functions need not concern us here — they are
built into R.

The key facts, for our purposes, are summarized on the following slide.
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Student’s t Distribution Basic Facts about Student’s t

Student’s t Distribution

The t distribution, in its more general form, has two parameters:

1 The degrees of freedom, ν

2 The noncentrality parameter, δ

When δ = 0, the distribution is said to be the “central Student’s t,”
or simply the “t distribution.”

When δ 6= 0, the distribution is said to be the “noncentral Student’s
t,” or simply the “noncentral t distribution.”

The central t distribution has a mean of 0 and a variance slightly
larger than the standard normal distribution. The kurtosis is also
slightly larger than 3.

The central t distribution is symmetric, while the noncentral t is
skewed in the direction of δ.
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Student’s t Distribution Basic Facts about Student’s t

Student’s t Distribution
Distributional Characterization

If Z is a N(0, 1) random variables, V is a χ2
ν random variable that is

independent of Z and has ν degrees of freedom, then

tν,δ =
Z + δ√

V /ν
(2)

has a noncentral t distribution with ν degrees of freedom and
noncentrality parameter δ.
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Relationship to the One-Sample t Distribution of the Test Statistic

Distribution of the 1-Sample t

How does the fundamental result of Equation 2 relate to the
distribution of (Y • − µ0)/

√
s2/n?

First, recall from our Psychology 310 discussion of the chi-square
distribution that

s2 ∼ σ2 χ
2
n−1

n − 1
(3)

and that, if the observations are taken from a normal distribution,
then Y • and s2 are independent.
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Relationship to the One-Sample t Distribution of the Test Statistic

Distribution of the 1-Sample t

Now let’s do some rearranging. Assume that, in this case, ν = n − 1.

t =
Y • − µ0√

s2/n

=
(Ȳ• − µ) + (µ− µ0)√

σ2χ2
ν/(nν)

=

(Ȳ•−µ)√
σ2/n

+
√

n (µ−µ0)
σ√

χ2
ν/ν

(4)

We readily recognize that the left term in the numerator is a N(0, 1)
variable, the right term is δ =

√
nEs , and the denominator is a

chi-square divided by its degrees of freedom.

Moreover, since Y • is the only random variable in the Z variate in the
numerator, it is independent of the chi-square variate in the
denominator.

So, the statistic

tn−1,δ =
Y • − µ0

s/
√

n
(5)

must have a noncentral t distribution with n − 1 degrees of freedom,
and a noncentrality parameter of δ =

√
nEs .

If µ = µ0, then δ = 0 and the statistic has a central Student t
distribution.
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Relationship to the One-Sample t The General Approach to Power Calculation

The General Approach to Power Calculation

The general approach to power calculation is as follows:

Under the null hypothesis H0,

1 Calculate the distribution of the test statistic

2 Set up rejection regions that establish the probability of a rejection to
be equal to α

Then specify an alternative state of the world, H1, under which the
null hypothesis is false. Under H1

1 Compute the distribution of the test statistic

2 Calculate the probability of obtaining a result that falls in the rejection
region established under H0.

James H. Steiger (Vanderbilt University) 10 / 51



Relationship to the One-Sample t The General Approach to Power Calculation

The General Approach to Power Calculation

Note the following key points:

Developing expressions for the exact null and non-null distributions of
the test statistic often requires some specialized statistical knowledge.

In general, it is much more likely that expressions for the null
distribution of the test statistic will be available than expressions for
the non-null distribution.

Fortunately, statistical simulation will often provide a reasonable
alternative to exact calculation.
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Relationship to the One-Sample t Power Calculation for the 1-Sample t

Power Calculation for the 1-Sample t

Power calculation for the 1-Sample t is straightforward if we follow
the usual steps.

Suppose, as with the z-test example, we are pursuing a 1-Sample
hypothesis test that specifies H0 : µ ≤ 70 against the alternative that
H1 : µ > 70. We will be using a sample of n = 25 observations, with
α = 0.05.

If the null hypothesis is true, the test statistic will have a central t
distribution with n − 1 = 24 degrees of freedom.

The (one-tailed) critical value will be

> qt(0.95, 24)

[1] 1.710882

What will the power of the test be if µ = 75 and σ = 10?
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Relationship to the One-Sample t Power Calculation for the 1-Sample t

Power Calculation for the 1-Sample t

In this case, the non-null distribution is noncentral t, with 24 degrees
of freedom, and a noncentrality parameter of√

nEs =
√

25(75− 70)/10 = 2.5.

So power is the probability of exceeding the rejection point in this
noncentral t distribution.

> 1 - pt(qt(0.95, 24), 24, 2.5)

[1] 0.7833861

Gpower gets the identical result, as shown on the next slide.
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Relationship to the One-Sample t Power Calculation for the 1-Sample t

Power Calculation for the 1-Sample t
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Relationship to the One-Sample t Power Calculation for the 1-Sample t

Power Calculation for the 1-Sample t

GPower can do a lot more, including a variety of plots.

Here is one showing power versus sample size when Es = 0.50.
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Relationship to the One-Sample t Power Calculation for the 1-Sample t

Power Calculation for the 1-Sample t

Of course, we could generate a similar plot in a few lines of R, and
would then be free to augment the plot in any way we wanted.

> ### Generic Function for T Rejection Point

> T.Rejection.Point <- function(alpha, df, tails) {
+ if (tails == 2)

+ return(qt(1 - alpha/2, df))

+ if ((tails^2) != 1)

+ return(NA)

+ return(tails * qt(1 - alpha, df))

+ }
> ### Generic Function for T-Based Power

> Power.T <- function(delta, df, alpha, tails) {
+ pow <- NA

+ R <- T.Rejection.Point(alpha, df, abs(tails))

+ if (tails == 1)

+ pow <- 1 - pt(R, df, delta) else if (tails == -1)

+ pow <- pt(R, df, delta) else if (tails == 2)

+ pow <- pt(-R, df, delta) + 1 - pt(R, df, delta)

+ return(pow)

+ }
> ### Power Calc for One-Sample T

> Power.T1 <- function(mu, mu0, sigma, n, alpha, tails) {
+ delta = sqrt(n) * (mu - mu0)/sigma

+ return(Power.T(delta, n - 1, alpha, tails))

+ }
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Relationship to the One-Sample t Power Calculation for the 1-Sample t

Power Calculation for the 1-Sample t
> ### Plot Power Curve

> curve(Power.T1(75, 70, 10, x, 0.05, 1), 10, 100, xlab = "Sample Size",

+ ylab = "Power", col = "red")
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Relationship to the One-Sample t Sample Size Calculation for the 1-Sample t

Sample Size Calculation for the 1-Sample t

In the 1-sample z test for a single mean, we saw in Psychology 310
that it is possible to develop an equation that directly calculates the
sample size required to yield a desired level of power.

However, in most cases, a closed-form solution for n is not available,
because the shape of the test statistic changes along with its location
and spread as a function of n and the effect size.

Consequently, in most cases iterative methods must be employed.
These methods try an initial value for n, compute an “improvement
direction”, and step the value of n in that direction, until the
difference between the computed power and desired power drops
below a target value.

With modern software, the target n is found in less than a second for
most problems.
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Relationship to the One-Sample t Sample Size Calculation for the 1-Sample t

Sample Size Calculation for the 1-Sample t

Modern power calculation software handles many of the classic cases
in parametric statistics. However, in more complex circumstances,
remember that, through the use of R’s extensive simulation and
plotting capabilities, you can obtain power curves and sample-size
calculations in situations that “canned” software cannot handle.

The approach is simple. Plot power versus sample size, then home in
on a narrow region of the plot to determine just where sample size
becomes barely large enough to yield desired power.
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Relationship to the One-Sample t Sample Size Calculation for the 1-Sample t

Sample Size Calculation for the 1-Sample t
An Example

Example (Sample Size Calculation)

Let’s try calculating the required sample size to achieve a power of
0.95 when Es = 0.80, and the test is two-sided with α = 0.01. We’ll
use the graphical approach. Here is a preliminary plot. Notice again
that Es can be input directly by setting µ0 = 0 and σ = 1 and setting
µ = Es .
In a couple of seconds, we have the required n narrowed down to
between 30 and 35.
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Relationship to the One-Sample t Sample Size Calculation for the 1-Sample t

Sample Size Calculation for the 1-Sample t
An Example

> curve(Power.T1(0.8, 0, 1, x, 0.01, 2), 10, 100, xlab = "Sample Size",

+ ylab = "Power", col = "red")

> abline(h = 0.95)

> abline(v = 30)

> abline(v = 35)
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Relationship to the One-Sample t Sample Size Calculation for the 1-Sample t

Sample Size Calculation for the 1-Sample t
An Example

Example (Sample Size Calculation)

Re-plotting the graph with this narrower range and plotting a few
additional grid lines quickly establishes that the minimum required n is 32.
The exact power at this sample size is

> Power.T1(0.8, 0, 1, 32, 0.01, 2)

[1] 0.9556539
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Relationship to the One-Sample t Sample Size Calculation for the 1-Sample t

Sample Size Calculation for the 1-Sample t
An Example

> curve(Power.T1(0.8, 0, 1, x, 0.01, 2), 30, 35, xlab = "Sample Size",

+ ylab = "Power", col = "red")

> abline(h = 0.95)

> abline(v = 31)

> abline(v = 32)
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Relationship to the One-Sample t Sample Size Calculation for the 1-Sample t

Sample Size Calculation for the 1-Sample t
An Example

Example (Sample Size Calculation)

GPower automates the process, and yields the identical answer, as shown
below.
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Relationship to the One-Sample t Sample Size Calculation for the 1-Sample t

Sample Size Calculation for the 1-Sample t
An Example
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Relationship to the t Test for Two Independent Samples Distribution of the Test Statistic

Distribution of the 2-Sample t

Earlier, we took the general characterization of the 1-sample t and,
with a little algebraic manipulation, we showed that the general
distribution of the statistic is noncentral t with a noncentrality
parameter δ that is a simple function of Es and n.

The 2-sample t for two independent groups is used to compare the
difference between two population means with a target value that is
usually zero. It is calculated as

tn1+n2−2 =
Y •1 − Y •2 − κ0√

w σ̂2
(6)

where κ0 is the null-hypothesized value of µ1 − µ2,

w =
1

n1
+

1

n2
=

n1 + n2

n1n2
(7)

and

σ̂2 =
(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2
(8)
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Relationship to the t Test for Two Independent Samples Distribution of the Test Statistic

Distribution of the 2-Sample t

By a process similar to our derivation in the 1-sample case, we may
show that the general distribution of the 2-sample t statistic is
noncentral t, with degrees of freedom equal to ν = n1 + n2 − 2, and
noncentrality parameter given by
δ =
√

w−1Es =
√

(n1n2)/(n1 + n2)Es . Es is the standardized effect
size, again, the amount by which the null hypothesis is wrong,
re-expressed in standard deviation units, i.e.,

Es =
µ1 − µ2 − κ0

σ
(9)

Notice that, if the sample sizes are equal to a common n, then
δ =

√
n/2Es .
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Relationship to the t Test for Two Independent Samples Power Calculation for the 2-Sample t

Power Calculation for the 2-Sample t

Power calculation for the 2-Sample t is straightforward.

Here is a compact function for the calculations.

Note how this function draws on a general purpose function for
computing power with the t distribution that we defined earlier.

> Power.T2 <- function(mu1, mu2, sigma, n1, n2, alpha, tails,

+ hypo.diff = 0) {
+ delta = sqrt((n1 * n2)/(n1 + n2)) * (mu1 - mu2 - hypo.diff)/sigma

+ return(Power.T(delta, n1 + n2 - 2, alpha, tails))

+ }
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Relationship to the t Test for Two Independent Samples Power Calculation for the 2-Sample t

Power Calculation for the 2-Sample t

Suppose we wish to calculate the power to detect Es = 0.50, when
n1 = n2 = 20, α = .05, and the test is 2-sided.

Again, note how we “trick” the power analysis function by entering
µ2 = 0, σ = 1, and replacing µ2 with Es .

> Power.T2(0.5, 0, 1, 20, 20, 0.05, 2)

[1] 0.337939
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Relationship to the t Test for Two Independent Samples Sample Size Calculation for the 2-Sample t

Sample Size Calculation for the 2-Sample t

Clearly, the power with n = 20 per group is not adequate, and we
could proceed as before to determine a sample size per group that
would yield a desired level of power.

Sample size planning in the case of two independent groups is
rendered slightly more complicated than in the case of a single
sample, because in some cases it is substantially easier to get
participants from one group than from the other.

Suppose, for example, you were planning to compare µ1 and µ2 in
two independent groups of men and women, but in your participant
pool, women outnumber men by a 2 to 1 ratio.

Moreover, because of time constraints, you cannot afford to invest
the extra time equalizing the sizes of your two samples.

How would you proceed? (Assume desired power is 0.95, α =, 05,
2-sided test.)
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Relationship to the t Test for Two Independent Samples Sample Size Calculation for the 2-Sample t

Sample Size Calculation for the 2-Sample t
Unequal Group Proportions

The simple solution is to “tell the program” you are going to have
unequal sample sizes.

GPower offers you the choice of setting an “allocation ratio” of
n2/n1, and selects sample sizes for both groups on that basis.

Graphically, using R, we could proceed as follows. (There are several
closely related methods we might try.)
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Relationship to the t Test for Two Independent Samples Sample Size Calculation for the 2-Sample t

Sample Size Calculation for the 2-Sample t
Unequal Group Proportions

> curve(Power.T2(0.5, 0, 1, x, 2 * x, 0.05, 2), 75, 100, col = "red",

+ xlab = "n1 = n2/2", ylab = "Power")

> abline(h = 0.95)
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Relationship to the t Test for Two Independent Samples Sample Size Calculation for the 2-Sample t

Sample Size Calculation for the 2-Sample t
Unequal Group Proportions

In a few seconds, we can determine that n1 = 79 and n2 = 158 will
produce power slightly exceeding 0.95.

In fact, we still would have power slightly exceeding 0.95 if we
dropped n2 to 157.

However, given the guesswork involved and the probability of at least
minor assumption violations, such hairsplitting seems unnecessary
and, indeed, somewhat pedantic.
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Relationship to the Correlated Sample t Distribution of the Correlated Sample t Statistic

Distribution of the Correlated Sample t Statistic

In the correlated sample t statistic, n observations are observed for
two groups.

These observations represent either matched (or correlated) samples,
or repeated measures on the same individuals.

The correlated sample t statistic is actually a 1-sample t calculated
on the difference scores.

The null hypothesis compares the mean of the difference scores with a
hypothesized mean difference κ0, which usually is set equal to zero.

Consequently, the distribution of the correlated sample t is noncentral
t, with n − 1 degrees of freedom, and a noncentrality parameter of

δ =
√

nE ∗
s =
√

n
µ1 − µ2 − κ0

σdiff
(10)
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Relationship to the Correlated Sample t Distribution of the Correlated Sample t Statistic

Distribution of the Correlated Sample t Statistic
A Caveat

Clearly, we can process the power and sample size calculations for the
correlated sample t with essentially the same mechanics as we used
for the 1-sample t. You will note that the GPower input dialog for the
correlated sample test looks virtually identical to the input dialog for
the 1-sample test.

However, it is important to realize that, in a conceptual sense, the
“standardized effect size” we input in the 2-sample correlated sample
test is not the same as in the 2-sample independent sample case.
This is why I marked it with an asterisk.
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Relationship to the Correlated Sample t Distribution of the Correlated Sample t Statistic

Distribution of the Correlated Sample t Statistic
A Caveat

Let’s compare having two independent groups of equal size n, and
taking two repeated measures on one group of size n. In the former
case, the total n is ntotal = 2n, while in the latter case ntotal = n.

In the correlated sample case, if we make a simplifying assumption of
equal variances on each measurement occasion, we have

σ2
diff =

1

n

(
σ2 + σ2 − 2ρσ2

)
=

1

n
2σ2(1− ρ) (11)

So, in terms of the quantities used in the 2-sample test for
independent samples, we see that (assuming equal samples of size n
and a κ0 of zero),

1 Degrees of freedom are n− 1 in the correlated sample case, 2(n− 1) in
the independent sample case
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Relationship to the Correlated Sample t Distribution of the Correlated Sample t Statistic

Distribution of the Correlated Sample t Statistic
A Caveat

The noncentrality parameter is

δ =
√

n/2(µ1 − µ2)/σ =
1

2

√
ntotal(µ1 − µ2)/σ

in the independent sample case, and

δ = (1/
√

2(1− ρ))
√

ntotal(µ1 − µ2)/σ

in the dependent sample case.

So if we define Es = (µ1 − µ2)/σ, then in the independent case the
actual noncentrality parameter is δ =

√
ntotal(1/2)Es , while in the

dependent case it is δ =
√

ntotal(1/
√

2(1− ρ))Es . So, for example, if
ρ = 0.50, we have δ = 0.5

√
ntotalEs in the independent case, and

δ =
√

ntotalEs in the dependent sample case. For the same effect size
and total sample size, δ will be twice as large in the dependent
sample case.

Degrees of freedom in the independent sample test are ntotal − 2 and
in the dependent sample case degrees of freedom are ntotal − 1.
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Relationship to the Correlated Sample t Distribution of the Correlated Sample t Statistic

Distribution of the Correlated Sample t Statistic
A Caveat

Notice that, in both cases, the standardized effect we are usually
interested in from a substantive standpoint is (µ1 − µ2)/σ, and so the
actual power in the correlated sample test may be higher than in the
comparable independent sample case, provided ρ is positive.

The relative power depends on whether the gain in δ offsets the
halving of the degrees of freedom.

In the repeated measures case, the potential gain in power is often
accompanied by a reduction of the number of participants.

However, one must be on guard against possible order and history
effects when planning the administration of the repeated measures.
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Relationship to the Correlated Sample t Distribution of the Correlated Sample t Statistic

Distribution of the Correlated Sample t Statistic
A Caveat

As an example, suppose that, in the population, (µ1 − µ2)/σ = 0.30,
α = 0.05, and we desire a power of 0.90. Repeated measurements are
expected to correlate 0.70.

We first calculate the required sample size under the supposition that
we are taking two independent samples of size n. Routine power
calculations reveal that, for each group, a sample of n = 235 is
required.

In the repeated measures case, however, the “effective Es” is
0.30/

√
2(1− 0.70) = 0.3872983 in what is essentially a 1-sample t.

It turns out that one only needs a sample of size n = 72 to be
measured on two occasions to attain the power of 0.90. So the total
number of participants is reduced from 470 to 72, and the number of
observations is reduced from 470 to 144.

GPower draws attention to the fact that one needs to calculate this
somewhat different effect size. One clicks on a Determine key, which
opens up a separate dialog.
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Relationship to the Correlated Sample t Distribution of the Correlated Sample t Statistic

Distribution of the Correlated Sample t Statistic
Assumptions

The assumptions for the correlated sample t test are a bit different
from those of the 2-sample independent sample test.

The correlated sample test requires the assumption of bivariate
normality, which is a stronger condition than having data in each
condition be normally distributed.

The correlated sample test, on the other hand, does not require the
assumption of equal variances, because the two sets of observations
are collapsed into one prior to the final calculations.
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Relationship to the Correlated Sample t Distribution of the Correlated Sample t Statistic

Power Calculation in the Correlated Sample t
Assumptions

Here we give an example of calculating power for a 2-sample
correlated sample t-statistic, using the function
Power.T2Correlated.

Suppose that a repeated measures study with a sample size of
n = 100 takes samples that have means of µ1 = 15, µ2 = 10, and a
population standard deviation of σ = 10. If the two measurements
correlate ρ = 0.50 in the population, and α = 0.05, what is the power
to test the null hypothesis H0 : µ1 = µ2?

> Power.T2Correlated <- function(mu1, mu2, sigma, n, rho,

+ alpha, tails) {
+ delta = sqrt(n) * (mu1 - mu2)/sigma/sqrt(2 * (1 - rho))

+ return(Power.T(delta, n - 1, alpha, tails))

+ }
> Power.T2Correlated(15, 10, 10, 100, 0.5, 0.05, 2)

[1] 0.9986097
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Distribution of the Generalized t Statistic

Distribution of the Generalized t Statistic

Recall that the generalized t statistic for testing the null hypothesis
κ =

∑J
j=1 cjµj = κ0 may be written in the form

tν =
K − κ0√

W σ̂2
(12)

where W =
∑

j c2
j /nj , and K =

∑
j cj X̄•j .

If we define Es , the standardized effect size as

Es =
κ− κ0

σ
(13)

then, using the exact same approach we used with the 1-sample t, we
may show easily that the distribution of the generalized t statistic is
noncentral t, with degrees of freedom n• − J, and noncentrality
parameter

δ = W −1/2Es = W −1/2κ− κ0

σ
(14)

It is then a straightforward matter to write a general routine to
calculate power for the generalized t statistic.
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Distribution of the Generalized t Statistic

Power Calculation for the Generalized t

Here is simplified code for the power calculation.

Note how it draws on the functions we established previously.

> Power.GT <- function(mus, ns, wts, sigma, alpha, tails,

+ kappa0 = 0) {
+ W = sum(wts^2/ns)

+ kappa = sum(wts * mus)

+ delta = sqrt(1/W) * (kappa - kappa0)/sigma

+ df = sum(ns) - length(ns)

+ return(Power.T(delta, df, alpha, tails))

+ }

To apply the function, we simply input a vector of means, sample
sizes, weights, and the population standard deviation. Here is an
example in which the average of two experimental groups is compared
to a control.

> Power.GT(c(75, 75, 70), c(10, 10, 10), c(1/2, 1/2, -1),

+ 10, 0.05, 2)

[1] 0.2380927

Is there an alternative (better?) way of thinking about this
calculation in terms of a standardized effect size, rather than
inputting vectors of means?
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Sample Size Estimation in the Generalized t

To evaluate how big an n per group we need to achieve power of 0.90, we
can try to draw a plot of sample size versus power, using the curve
function.

> curve(Power.GT(c(75, 75, 70), c(x, x, x), c(1/2, 1/2, -1),

+ 10, 0.05, 2), 10, 100)

Error in curve(Power.GT(c(75, 75, 70), c(x, x, x), c(1/2, 1/2, -1), 10,

: ’expr’ did not evaluate to an object of length ’n’

But it doesn’t work!

Turns out, there is a problem with the R curve function. It requires a
vectorizable function. There is a handout in the R Support Materials
section of the website that describes what the problem is, and gives some
fixes for it. Two service functions are shown below.

> curve.js <- function(f, a, b, points = 100, type = "l",

+ ...) {
+ ftext <- paste("g <- function(x){", f, "}")
+ eval(parse(text = ftext))

+ x <- seq(a, b, length = points)

+ plot(x, mapply(g, x), type, ...)

+ }
> plot.curve <- function(f, a, b, points = 100, type = "l",

+ ...) {
+ x <- seq(a, b, length = points)

+ plot(x, mapply(f, x), type, ...)

+ }
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Sample Size Estimation in the Generalized t

> curve.js("Power.GT(c(75,75,70),c(x,x,x),c(1/2,1/2,-1),10,0.05,2)",

+ 10, 100, col = "red", xlab = "Sample Size (n)", ylab = "Power")

> abline(h = 0.9, col = "blue")
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Sample Size Estimation in the Generalized t

Homing in, we see that n = 64 is the value we are looking for.

> curve.js("Power.GT(c(75,75,70),c(x,x,x),c(1/2,1/2,-1),10,0.05,2)",

+ 60, 65, col = "red", xlab = "Sample Size (n)", ylab = "Power")

> abline(h = 0.9, col = "blue")
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Power Analysis via Simulation

Because R has advanced functions for computing distributions, and
because we know formulas for the noncentrality parameter, we can, as we
have seen, construct power functions easily, and use them to compute
required sample size.

However, suppose we needed to compute power for the 1-Sample t and we
had no idea what the non-null distribution of the test statistic is.
Presumably, we know the null distribution, otherwise we wouldn’t be using
the test statistic.

How could we then proceed to perform power calculation and/or sample
size estimation?
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Power Analysis via Simulation

The answer is, so long as we have a model for the statistical population
distribution, and a routine to compute critical values and values for the
statistic itself, we can estimate power via a Monte Carlo Experiment.

Monte Carlo simulation works as follows:

1 Choose your parameters

2 Choose a number of replications

3 For each replication:

1 Generate data according to the model and parameters

2 Calculate the test statistic or confidence interval

3 Keep track of performance, e.g., whether the test statistic rejects, or
whether the confidence interval includes the true parameter

4 Display the results
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Power Analysis via Simulation

There is an introduction to Monte Carlo simulation in Lab 04 of
Psychology 310.

Here, we write a brief program to estimate the power of a 1 sample t test,
based on an input value of Es , n, and α. We’ll assume that the situation is
the same as earlier in the lecture. We have a 1-sided null hypothesis that
µ ≤ 70, with the true situation that µ = 75 and σ = 10. What is the
power if n = 25?
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> t1 <- function(xbar, s, n, mu0) {
+ sqrt(n) * (xbar - mu0)/s

+ }
> get.t <- function(n, mu, m0, sigma) {
+ x <- rnorm(n, mu, sigma)

+ t1(mean(x), sd(x), n, mu0)

+ }
> alpha <- 0.05

> mu = 75

> mu0 = 70

> n = 25

> sigma = 10

> reps = 10000

> tails = 1

> Power.T1S <- function(mu, mu0, sigma, n, alpha, tails, reps = 10000) {
+ R <- T.Rejection.Point(alpha, n - 1, tails)

+ if (tails == 1)

+ return(mean(replicate(reps, get.t(n, mu, mu0, sigma) >

+ R)))

+ if (tails == -1)

+ return(mean(replicate(reps, get.t(n, mu, mu0, sigma) <

+ R)))

+ if (tails == 2)

+ return(mean(replicate(reps, abs(get.t(n, mu, mu0,

+ sigma)) > R)))

+ }
> Power.T1S(mu, mu0, sigma, n, alpha, tails)

[1] 0.7887

> Power.T1(mu, mu0, sigma, n, alpha, tails)

[1] 0.7833861
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It takes a minute or two to produce the power vs. sample size curve we
saw earlier. I’ve superimposed the exact result in red onto the simulation
result in blue.

> curve.js("Power.T1S(75,70,10,x,0.05,1)", 10, 100, 91, xlab = "Sample Size",

+ ylab = "Power", col = "blue")

> curve(Power.T1(75, 70, 10, x, 0.05, 1), 10, 100, xlab = "Sample Size",

+ ylab = "Power", col = "red", add = TRUE)
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